Leptogenesis -

Connection to Neutrino Oscillation, and other Low Energy CP/Flavor Violating Processes

Mu-Chun Chen, University of California, Irvine

Snowmass on the Mississippi (CSS2013), Minnesota, August 2, 2013

Standard Leptogenesis

Fukugita, Yanagida, 1986

- Implemented in the context of seesaw mechanism
- out-of-equilibrium decays of RH neutrinos produce primordial lepton number asymmetry

 Luty, 1992; Covi, Roulet, Vissani, 1996; Flanz et al, 1996; Plumacher, 1997; Pilaftsis, 1997

$$\epsilon_{1} = \frac{\sum_{\alpha} \left[\Gamma(N_{1} \to \ell_{\alpha} H) - \Gamma(N_{1} \to \overline{\ell_{\alpha}} \overline{H}) \right]}{\sum_{\alpha} \left[\Gamma(N_{1} \to \ell_{\alpha} H) + \Gamma(N_{1} \to \overline{\ell_{\alpha}} \overline{H}) \right]}$$

- sphaleron process convert $\Delta L \rightarrow \Delta B$
- the asymmetry Buchmuller, Plumacher, 1998; Buchmuller, Di Bari, Plumacher, 2004

$$Y_B \simeq 10^{-2} \epsilon \kappa$$
 κ : efficiency factor $\sim (10^{-1}-10^{-3})$ $Y_B = \frac{n_B - n_{\overline{B}}}{s} \sim 8.6 \times 10^{-11}$ (k: inverse decay $\Delta L=1$, scattering processes $\Delta L=1$, 2)

Bound on Light Neutrino Mass

 sufficient leptogenesis requires

$$M_1 \gtrsim 3x10^9 \text{ GeV}$$

 upper bound on light neutrino mass

$$m_{_{1}} < 0.12 eV$$

- · incompatible with quasidegenerate spectrum
- constraints slightly alleviated with flavored case

P. Di Bari, 2012

3

Gravitino Problem

Mu-Chun Chen, UC Irvine

Leptogenesis

Snowmass 2013, 08/02/2013

Alternatives: "Non-standard" Scenarios

- Possible ways to avoid the tension:
 - resonant enhancement in self-energy diagram ⇒ lowering M_R, thus T_{RH}
 - → resonant leptogenesis (near degenerate RH neutrinos) Pilaftsis, 1997

Recall: in standard leptogenesis:

self-energy diagram dominate for near degenerate RH neutrino masses, $M_{1,2}$ enhanced O(1) asymmetry possible if

$$M_1 - M_2 \sim \frac{1}{2} \Gamma_{N_{1,2}}$$
 , assuming $\frac{Im(h_{\nu}h_{\nu}^{\dagger})_{12}^2}{(h_{\nu}h_{\nu}^{\dagger})_{11}(h_{\nu}h_{\nu}^{\dagger})_{22}} \sim 1$

possible collider test

leptogenesis possible even for low M_{1,2}

Pilaftsis, Underwood, 2003

Dirac Leptogenesis

K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; H. Murayama, A. Pierce, 2002

- Leptogenesis possible even when neutrinos are Dirac particles
- small Dirac mass through suppressed Yukawa coupling
- Characteristics of Sphaleron effects:
 - only left-handed fields couple to sphalerons
 - sphalerons change (B+L) but not (B-L)
 - sphaleron effects in equilibrium for T > Tew
- If L stored in RH fermions can survive below EW phase transition, net lepton number can be generated even with L=0 initially

late time LR equilibration of neutrinos making
Dirac leptogenesis possible

N_{eff} > 3 (enhanced by ~10%) [thanks to Michael Ratz]

Dirac Leptogenesis

K. Dick, M. Lindner, M. Ratz, D. Wright, 2000; H. Murayama, A. Pierce, 2002

- for neutrinos: LH equilibration at late time ($T_{eq} \ll T_{EW}$) because of their much suppressed masses ($m_D < 10~{\rm keV}$)
- Naturally small Dirac neutrino mass?
- Two examples:
 - non-anomalous U(1) family symmetry
 M.-C.C., J. Huang, W. Shepherd (2011)
 - gives realistic quark and lepton masses and mixing patterns
 - naturally small Dirac neutrino masses due to higher dimensional operators
 - primordial asymmetry by U(1) flavor Higgs decay
 - discrete R-symmetries M.-C.C., M. Ratz, C. Staudt, P. Vaudrevange (2012)
 - satisfy all anomaly cancellation conditions a la Green-Schwarz mechanism
 - automatically suppressed the mu term, thus solving the mu problem in MSSM
 - automatically suppressed the Dirac neutrino masses
 - Lepton Number Violation: $\Delta L = 4$

Testing Leptogenesis?

- Sakharov Conditions:
 - out-of-equilibrium
 - expanding Universe
 - → smallness of neutrino masses
 - Baryon Number Violation

Leptogenesis with Majorana neutrino: out-of-equilibrium heavy field decay

Dirac Leptogenesis: late equilibration temperature

- → abound in many extensions of the SM
- neutrinoless double beta decay
 - Leptogenesis with Majorana (if observed) or Dirac (if not observed) neutrinos
 - if Dirac: Neff enhanced
- CP violation
 - → Long baseline neutrino oscillation experiments

Mu-Chun Chen, UC Irvine

Leptogenesis

Snowmass 2013, 08/02/2013

Connection to Low Energy Observables

Seesaw Lagrangian at high energy (in the presence of RH neutrinos)

6 mixing angles + 6 physical phases

Low energy effective Lagrangian (after integrating out RH neutrinos)

3 mixing angles + 3 physical phases

presence of low energy leptonic CPV (neutrino oscillation, neutrinoless double beta decay)

high energy → low energy: numbers of mixing angles and CP phases reduced by half

leptogenesis ≠ 0

- No model independent connection
- Statement is weakened when the so-called flavor effects are taken into account (relevant if leptogenesis at T < 10¹² GeV)
- BUT, in certain models, connection can be established even without the flavor effects

Connection in Specific Models

- models for neutrino masses:
 - additional symmetries
 - reduce the number of parameters ⇒ connection can be established
- rank-2 mass matrix (may be realized by symmetry)
 - models with 2 RH neutrinos (2 x 3 seesaw) Kuchimanchi & Mohapatra, 2002
 - sign of baryon asymmetry
 ⇔ sign of CPV in v oscillation Frampton, Glashow, Yanagida, 2002
- all CP come from a single source
 - models with spontaneous CP violation:
 - SM + vectorial quarks + singlet scalar Branco, Parada, Rebelo, 2003
 - minimal LR model: only 1 physical leptonic CP phase M.-.C.C, Mahanthappa, 2005
 - SCPV in SO(10): <126>B-L complex Achiman, 2004, 2008
 - SUSY SU(5) x T' Model: M.-.C.C, Mahanthappa, 2009
 - group theoretical origin of CP violation ⇒ only low energy lepton phases ≠ 0

Mu-Chun Chen, UC Irvine Leptogenesis Snowmass 2013, 08/02/2013 10

Example: Minimal LR Model w/ Spontaneous CPV

- minimal LR symmetric Model:
 - matter content

$$Q_{i,L} = \begin{pmatrix} u \\ d \end{pmatrix}_{i,L} \sim (1/2, 0, 1/3), \qquad Q_{i,R} = \begin{pmatrix} u \\ d \end{pmatrix}_{i,R} \sim (0, 1/2, 1/3)$$

$$L_{i,L} = \begin{pmatrix} e \\ \nu \end{pmatrix}_{i,L} \sim (1/2, 0, -1), \qquad L_{i,R} = \begin{pmatrix} e \\ \nu \end{pmatrix}_{i,R} \sim (0, 1/2, -1)$$

Higgs content

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (1/2, 1/2, 0) \qquad \Delta_L = \begin{pmatrix} \Delta_L^+/\sqrt{2} & \Delta_L^{++} \\ \Delta_L^0 & -\Delta_L^+/\sqrt{2} \end{pmatrix} \sim (1, 0, 2) \qquad \Delta_R = \begin{pmatrix} \Delta_R^+/\sqrt{2} & \Delta_R^{++} \\ \Delta_R^0 & -\Delta_R^+/\sqrt{2} \end{pmatrix} \sim (0, 1, 2)$$

Two physical CP phases

$$<\Phi>=\begin{pmatrix}\kappa&0\\0&\kappa'e^{i\alpha_{\kappa'}}\end{pmatrix}, \quad <\Delta_L>=\begin{pmatrix}0&0\\v_Le^{i\alpha_L}&0\end{pmatrix}, \quad <\Delta_R>=\begin{pmatrix}0&0\\v_R&0\end{pmatrix}$$

$$\alpha_{\kappa'} \Rightarrow \text{ all CPV in quark sector}$$

 $\alpha_L \Rightarrow \text{ all CPV in lepton sector}$

(contributions to lepton sector negligible for high seesaw scale)

Example: Minimal LR Model w/ Spontaneous CPV

 correlations: lepton number asymmetry, neutrinoless double beta decay matrix element, leptonic Jarlskog invariant

Connection to Other B/L Violating Processes

- e.g. n-nbar oscillation searches → complementarity test of leptogenesis (baryogenesis) mechanisms
 - constrain the scale of leptogenesis
- observation of neutron antineutron oscillation
 - new physics with $\Delta B = 2$ at $10^{(5-6)}$ GeV
 - erasure of matter-antimatter generated at high scale, e.g. standard leptogenesis

Babu, Mohapatra, 2012

[Animation Credit: Michael Ratz]

- Low scale leptogenesis scenarios preferred:
 - Dirac Leptogenesis
 - · Resonance Leptogenesis
 - Soft leptogenesis; ...

Conclusions

- origin of matter: one of the great mysteries in particle physics and cosmology
- leptogenesis: appealing mechanism connected to neutrino physics
- various leptogenesis realizations:
 - standard leptogenesis: gravitino problem, tension with SUSY
 - Low scale alternatives:
 - resonance leptogenesis
 - Dirac leptogenesis
 - Soft leptogenesis (CP phases in soft SUSY sector; decouple from neutrino physics; require small B term)

Conclusions

- tested by "archeological" evidences
- model-independent ways:
 - Kinematic test, Cosmology (absolute neutrino mass bound, N_{eff})
 - Neutrino-less double beta decay (Majorana vs Dirac leptogenesis)
- Leptonic CP violation:
 - important fundamental property of neutrinos, independent of leptogenesis
- model-dependent connections to CPV in other sectors possible
 - correlations: models with single source of CPV (J_{cp} , $< m_{\beta\beta}>$, EDM, etc)
 - searches at neutrino experiments (leptonic CPV, mixing parameters)
 - complementarity test from other B or L violating processes
 - e.g. N-Nbar oscillation ⇒ constraint scale of leptogenesis